Человек против бактерий: кто кого?
Этим летом вся Европа была напугана очень маленьким существом — патогенным штаммом кишечной палочки Escherichia coli. Ее длина — всего 2-3 микрона, но она опасна и шустра. Поневоле задумаешься, кто же на нашей планете господствующий вид — человек или такие вот малютки?
Если одну кишечную палочку, которая, как известно, размножается простым бинарным делением, поместить в идеальную питательную среду и допустить, что еды у нее и ее потомков будет в достатке, то за сутки эта малышка способна образовать колонию весом около... 10 миллионов тонн!
Шокирующая цифра, не правда ли? Одноклеточные — если и не самые главные, то уж точно самые весомые, в прямом смысле, жители земного шара. Суммарная биомасса всех микроорганизмов, в том числе микроскопических грибов и водорослей, составляет 76 миллиардов тонн (в сухом остатке, без учета воды).
Все многоклеточные растения весят 55 миллиардов тонн, а масса животных, включая человека, составляет в сумме какие-то «жалкие» 500 миллионов тонн.
Да и в каждом здоровом человеческом теле наберется килограмма два бактерий, ведь человек — это симбиотический конгломерат клеток его собственного организма и бактерий. Как утверждает молодая наука метабономика, люди - это сверхорганизмы, в которых только 2-3 триллиона клеток непосредственно наши, родные.
Еще добрую сотню триллионов составляют микроорганизмы — их в человеческом теле более 500 видов. В этом сверхорганизме человеческая ДНК вовсе не является преобладающей, утверждает отец-основатель метабономики британский биохимик Джереми Николсон.
Каждый из нас обладает уникальным геномом, который складывается из собственного генетического материала и ДНК населяющих нас многочисленных одноклеточных.
КТО В ЧЕЛОВЕКЕ ЖИВЕТ?
В большинстве случаев младенцы рождаются стерильными. Однако в первые же сутки их жизни начинается создание микробиоценоза: человек колонизируется множеством микроорганизмов. Сначала это хаотический процесс, в ходе которого бактерии яростно борются за «место под солнцем» и внутри, и снаружи.
Через 2-3 дня устойчивые колонии получают пожизненную прописку в различных частях тела. Это так называемые облигатные — полезные и. более того, необходимые микробы. Можно сказать, самые близкие людям живые существа в этом мире.
На всей поверхности кожи и в ее верхнем слое уютно устроились пропионибактерии, дифтероиды и коринебактерии. Они умеют поглощать приходящих извне патогенных бактерий, держат первый рубеж обороны.
Слизистая оболочка глаз заселена стафилококками и микоплазмой, которые не дают случайным пришельцам закрепиться здесь и начать размножение, В желудке плавает дружная команда стрептококков, лакто- и бифидобактерий в окружении дрожжеподобных грибов; все они хорошо переносит кислую среду желудочного сока и дают старт процессу переваривания пищи.
В кишечнике в тесноте, да не в обиде живут более 15 основных видов анаэробных бактерий и грибов рода Candida. И среди них та самая кишечная палочка Е. соli, непатогенные штаммы котором очень нужны человеку. Именно она вырабатывает в нашем организме витамин К2, отвечающий за свертываемость крови.
"Хотя мне исполнилось уже 50 лет, но у меня очень хорошо сохранились зубы, потому что я имею привычку каждое утро натирать их солью, а после очистки больших зубов гусиным пером хорошенько протирать их еще платком" — такие слова можно прочитать в письме сторожа судебной палаты из голландского города Делфта Антони ван Левенгука (1632-1723), которое он направил в Лондонское королевское общество.
Ничего не скажешь, оригинальный способ соблюдения гигиены полости рта, но прославился Левенгук, конечно, не этим - а тем, что научил человечество видеть потаенные стороны жизни природы. У Левенгука не было «ученого» образования, зато была поистине пламенная страсть: увеличительные стекла. Он был одним из первых, кто догадался объединить несколько линз в зрительную трубу для изучения не макро-, а микромира. И получил таким образом микроскоп.
Материалы для своих исследований он выбирал бессистемно: перечный настой, волокна хрена, чешуйки кожи, глаз мухи, моллюски, выловленные в каналах Делфта. Соскоб с зубов он разбавлял водой и в волшебных стеклах наблюдал «невероятное количество маленьких животных, и притом в таком крошечном кусочке вышеуказанного вещества, что этому почти невозможно было поверить, а если не убедишься собственными глазами.
Самоучка Левенгук за 50 лет наблюдений зарисовал более 200 видов «крошечных зверьков», как он называл своих новых знакомцев. Впрочем, научной революции тогда не случилось — еще сотню лет после Левенгука микромир оставался для ученого мира эдаким «шапито в микроскопе».
ДРУЗЬЯ И ВРАГИ
Пожалуй, практически все самые привычные для нас продукты питания — хлеб, сыр, йогурт, пиво, вино, шоколад и многое другое — не что иное, как продукты брожения. Всю основную работу по их приготовлению производят анаэробные бактерии и дрожжевые грибы. Человеку остается только бережно хранить, селекционировать и культивировать закваски — колонии бактерий.
И он делает это на протяжении тысячелетий. Еще за пять тысяч лет до Рождества Христова в древнем Вавилоне умели сбраживать напитки, а три с половиной тысячи лет назад египтяне придумали дрожжевой хлеб. Так что человек уже давно приручил своих микродрузей.
Профессиональные "дрессировщики», ученые-биотехнологи, вооружившись достижениями молекулярной биологии и генной инженерии, научили микробов делать массу полезных для человека вещей. Сегодня на полях вносят в почву бактериальные удобрения, а микробные инсектициды и пестициды, подверженные биодеградации, пришли на смену опасным химическим сельскохозяйственным реагентам.
Тионовые (окисляющие серу) бактерии выщелачивают ценные металлы из рудных концентратов и повышают качество серосодержащего каменного угля. Современная фармацевтика немыслима без «рабочих лошадок» - бактерий, одноклеточных грибов и водорослей, производящих все виды антибиотиков, противоопухолевые препараты, витамины и аминокислоты.
Команда исследователей под руководством профессора Джозефа Чеппела из американского Университета Кентукки выяснила, что все запасы нефти и угля на нашей планете — результат жизнедеятельности одной-единственной микроводоросли Botryococcus braunii. Так что, если бы не она, не видать нам ни тепловой энергетики, ни автомобилей.
Кроме того, некоторые микроорганизмы — это еще и самые старательные и дотошные в мире уборщики. Подсчитано, что если бы не работа бактерий гниения, разлагающих органические вещества, то кости животных, обитавших на Земле с начала ледникового периода, покрывали бы сегодня всю сушу полутораметровым слоем.
Взаимовыгодное существование человека и микроорганизмов портит только одно обстоятельство: есть порядочное количество простейших, которые не прочь ускорить процесс превращения живого в мертвое, сократив его до пары суток.
Со времен Гиппократа и приблизительно до середины XIX века считалось, что болезни, которые мы сегодня называем инфекционными, вызываются дурным воздухом и вредными испарениями — «миазмами». Среди теоретиков патогенеза ближе всего к истине был однокашник Коперника Джироламо Фракасторо. живший за сто с лишним лет до Левенгука. Он писал о крошечных «семенах», которые передаются от человека к человеку, поселяются внутри и вызывают болезни. Однако Фракасторо и помыслить не мог, что эти «семена» живые.
Потери человечества от эпидемических инфекционных заболеваний значительно превышают число жертв военных конфликтов. На полях сражений Столетней войны (1337-1453) погибли сотни тысяч человек.
А эпидемия бубонной чумы, случившаяся как раз во время той войны и продолжавшаяся всего пять лет, унесла жизни 34 миллионов европейцев. Всего же за все время существования нашей цивилизации жертвами одноклеточных возбудителей болезней пало около полутора миллиардов человек.
Весь XIX век в научном мире не утихали споры о том, виноваты ли микроорганизмы в том, что мы болеем и умираем. С одной стороны, ученые постоянно находили патогенных возбудителей в тканях умерших от холеры, туберкулеза, дифтерии; их чистые культуры выделили первые микробиологи, все как один — лауреаты Нобелевских премий по медицине: Эмиль Беринг, Пауль Эрлих, Илья Мечников и первооткрыватель возбудителей сибирской язвы, туберкулеза и холеры Роберт Кох.
Но с другой стороны, приверженцы гигиенической теории не уставал и твердить, что все болезни происходят от грязи. Во главе гигиенистов стоял президент Баварской академии наук Макс фон Петтенкофер. Профессор прославился тем, что в 73 года в доказательство своих научных теорий в присутствии свидетелей проглотил чистую культуру холерного вибриона.
Холерой Петтенкофер не заболел, все обошлось легким расстройством желудка. Понятия «специфический иммунитет» в тот момент еще не существовало, а профессор был здоров как бык. Наверняка сработала и сила внутренней убежденности в собственной правоте.
Петтенкофер настолько дорожил собственным здоровьем и не желал болеть, что, ощутив себя в 82 года дряхлеющим стариком, предпочел застрелиться.
Сегодня мы точно знаем: такие болезни, как чума, дифтерия, холера, туберкулез и многие другие, однозначно вызываются бактериями, которые в процессе своей жизнедеятельности выделяют токсины. Оспу, корь, гепатит, полиомиелит провоцируют не бактерии, а вирусы. Вирусы намного меньше бактерий (20-500 нанометров в поперечнике), и до сих пор не вполне понятно, живые они или нет. Сам но себе вирус размножаться не способен — он производит потомство, используя ДНК клетки, в которую внедряется.
КОВАРНЕЙ КОШКИ ЗВЕРЯ НЕТ
В отличие от вирусов, бактериям в деле продолжения рода свойственна самостоятельность. Высокая скорость размножения обеспечивает им видовое выживание, а относительно короткая ДНК позволяет оперативно мутировать, вынуждая человечество изобретать все новые и новые антибиотики. «Хитрость» микроорганизмов не ограничивается мутацией — известны случаи, когда бактерии манипулируют своими носителями. Такую удивительную способность демонстрирует, например, одноклеточный паразит токсоплазма.
Основные хозяева паразита — представители семейства кошачьих. Именно в их организмах токсоплазма размножается. Переносчиками же могут быть мыши, крысы, свиньи, птицы и люди.
Еще недавно паразитологи считали, что токсоплазма представляет опасность разве что для младенцев, находящихся в утробе матери: при врожденном токсоплазмозе происходит поражение центральной нервной системы, глаз, часто младенец и вовсе погибает. Однако некоторые исследователи полагают, что токсоплазма способна влиять и на поведение взрослых людей.
В 2007 году ученые из Стэнфордского университета доказали, что эти паразиты управляют инстинктом самосохранения мышей. Здоровые мыши запрограммированы природой избегать кошачьих меток, но если в организм грызунов попадает токсоплазма, то кошачьи метки, наоборот, начинают их привлекать.
При этом остальные рефлексы не нарушаются. Так токсоплазма контролирует свой собственный жизненный цикл, управляя переносчиком: для нее выгодно, чтобы мышь погибла, будучи съеденной кошкой.
Паразит способен перевиваться и человеку. Конечно, он не вызывает у нас желания пойти на корм кошкам, но определенные изменения сознания возникают. Можно, например, вспомнить о знакомых всем бабушках-кошатницах, готовых приютить в своих квартирах целую хвостатую стаю.
Впрочем, подлинную роль токсоплазмы ученым еще предстоит выяснить. Пока можно сказать только одно — «другим человека» она не была никогда. В отличие от нашего симбионта — кишечной палочки Е. coli. Каким же образом незаменимый помощник превратился в убийцу? Эта детективная интрига все еще ждет своей разгадки.
Пока ученые искали преступника, перебирая всех возможных подозреваемых, начиная с испанского огурца и заканчивая пажитником из Египта, эпидемия сама собой сошла на нет. Теперь уже не определить ни «место преступления», ни какая из миллиона других видов бактерий передала часть своего генома "хорошей" кишечной палочке, после чего та приобрела неприятную особенность вырабатывать гибельные для почек токсины и разрушать эритроциты. Кроме того, новый штамм, обозначенный шифром О104:Н4, получил от какого-то другого микроорганизма удивительную стойкость к антибиотикам.
Можно сказать и о простейших. Казалось бы, все просто: одноклеточные размножаются делением или почкованием, а значит, весь геном должен передаваться от «мамы» к «дочке* в целости и сохранности. Но существует еще и так называемый горизонтальный перенос генов — процесс, отдаленно напоминающий спаривание. Происходит физический контакт, в ходе которого бактерии обмениваются генетической информацией.
Причем контактировать могут особи совершенно разных видов — и успешно. В результате возникают новые подвиды — штаммы, становящиеся звеном в непредсказуемой эволюции бактерий, эволюции гораздо более быстрой, чем у многоклеточных. Эта скорость и обеспечивает их невероятное видовое многообразие.
В 2009 году израильские микробиологи изучали палочки Paunibacillus dentintiformis и решили провести эксперимент: что будет, если начать морить их голодом? Предполагалось, что в условиях дефицита питания клетки начнут активно размножаться в целях сохранения вида. Однако все пошло совсем по-другому: бактерии не только прекратили размножаться, но и принялись убивать сородичей, избавляясь от «лишних ртов». Когда численность колонии стала соответствовать количеству питательных веществ, ситуация стабилизировалась.
Ученые пока не утверждают, что микробы обладают коллективным разумом, но существование у них примитивных социальных механизмов считают доказанным.
«У бактерий есть примитивная форма социального сознания. — полагает руководитель исследования профессор Эшел Бен-Якоб. — Они знают, как собирать информацию из окружающей среды и передавать ее друг другу. Они могут распределять задачи и хранить «коллективную память». Химический язык, с помощью которого они общаются, превращает колонии микробов в большой мозг».
Хотелось бы научиться понимать этот «большой мозг», а еще лучше - с ним дружить. Но микромир живет по своим законам, и наших знаний о нем пока слишком мало для заключения долгосрочного мирового соглашения.
Журнал Discovery ноябрь 2011
Если вы видели что-то необычное, пришлите историю нам через форму обратной связи или на адрес newsparanormal@yandex.ru и мы опубликуем ее на этом сайте.